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A nonlinear solution is constructed representing the steady flow field generated in 
viscous incompressible fluid in a spherical envelope by a constant point force Fo acting 
at the centre 0 of the envelope. Our analysis shows that when Fo = 0(3v2p),  where v is 
the coefficient of kinematic viscosity and p the density of the fluid, the linear solution, 
which is symmetric about a plane through 0 perpendicular to the force, represents a 
reasonable approximation to the velocity field. As Fo increases the velocity field 
develops an asymmetry and the centre of the eddy, that exists in a meridian section, 
is displaced towards the direction of the force and is closer to the boundary. Also as Fo 
increases, on the axis of symmetry, the fluid speed per unit force decreases behind the 
force and increases ahead of it and percentage-wise the increase is larger further from 0. 

1. Introduction 
The stokeslet - that is, the steady-state linear flow field generated by a point force - 

has been studied for some time now with various boundary conditions; numerous 
references and applications of this in the biological field can be found in a review article 
by Lighthill (1976). More recently Liron & Shahar (1978) investigated the flow field 
induced by a point force in an infinitely long circular pipe. The basic approach for 
tackling the linear problem is straightforward, though the algebra could be complicated. 
The solution consists of two parts, that is the basic solution representing the stokeslet 
plus another component which is finite throughout the region of interest and takes 
prescribed values on the boundary so that the total velocity is zero there. 

There are not many solutions representing nonlinear flow fields generated by a point 
force. There is, in effect, only the solution representing the classical Landau-Squire 
momentum jet, that is the steady flow field generated by a point force in an infinite 
fluid. The development of this momentum jet was recently considered by Sozou & 
Pickering (1977). There is also Squire’s (1952) momentum jet representing the flow 
field generated by a point force acting through a small hole in a plate bounding a semi- 
infinite fluid, the force being perpendicular to the plate and pointing into the fluid, but 
there are doubts about the physical interpretation of Squire’s solution. The tangential 
velocity on the plate is not zero and the solution is not unique, that is this force can 
produce an inflow from the region adjacent to the plate and, along the direction of the 
force, a discharge perpendicular to the plane, but as pointed out by Sozou (1971) the 
reverse picture (momentum sink) is also compatible with this force. Also, on similarity 
grounds the velocity field of Squire’s solution is proportional to r-l, where r is the 
distance from the force, but recently Blake (1971) showed that, in the linear regime, 
the far flow field generated by a force perpendicular to the plate and at a distance a from 
it is proportional to r-3. 
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The importance of the momentum jets was recently emphasized by Lighthill (1978, 
9 4.7)) who suggested that in ultrasonics the attenuated energy of an acoustic beam 
generates a mean force that drives a velocity field known as the ‘sonic’ wind. For low 
power output the stokeslet represents an adequate representation of the flow field 
generated but when the power output of the beam is large the sonic wind field near the 
source of the force, where boundaries are unimportant, resembles that of the Landau- 
Squire jet. This momentum jet clearly demonstrates that the streamline pattern is 
not symmetrical ab0ut.a plane through the point of application of the force which is 
perpendicular to the axis (direction) of the force in contradistinction to the corre- 
sponding linear problem. On the axis of the jet, for instance, ahead of the force the 
flow field is stronger and behind it weaker than that associated with the stokeslet and 
this asymmetry increases as the magnitude of the applied force increases. The presence 
of boundaries must influence the nonlinearities of the problem, especially close to them, 
and it would be of interest to construct nonlinear solutions in order to study the effect 
of boundaries. The solution of the nonlinear problem, however, in the presence of 
general boundaries presents great difficulties as pointed out by Lighthill (1978), but in 
some special cases it may be possible to construct numerical solutions. We note that the 
Landau-Squire solution was constructed by means of similarity principles, the argu- 
ment being that, since there are no explicit scale lengths present, the stream function 
$ associated with the flow field must, on dimensional grounds, be of the form 
$ = vrg,(,u), where v is the coefficient of kinematic viscosity of the fluid, r the distance 
from the force and ,u = cos 8, 8 being the angle between the direction of the force and 
the radial vector from the force to the test point. When the flow field has axial sym- 
metry and the boundary does not pass through the point of application of the force 
we can attempt to construct a nonlinear solution by setting $ = vrg, g being a function 
of ,u and r that satisfies the condition g N go as r j .  0. The solution of the resulting 
equations could be a formidable problem, even numerically, depending on the shape 
of the boundary. Perhaps the simplest case arises in the extension of the problem 
considered in Lamb’s (1962, p. 606) Hydrodynamics, that is, the flow field due to a force 
a t  the centre of a fluid bounded by a spherical envelope, to the nonlinear regime. This 
we undertake below. 

2. Formulation of the problem 
We consider a spherical envelope of radius a containing viscous incompressible fluid. 

We shall denote the pressure, coeficient of kinematic viscosity and density of the 
fluid by p ,  v and p,  respectively. The fluid is acted on by a constant force Fb a t  the 
origin 0 along the direction 8 = 0 of a spherical polar co-ordinate system ( r ,  8, q%), 0 
coinciding with the centre of the cavity. The velocity field v will clearly be symmetric 
about the axis 8 = 0, rr and, it is convenient to express the steady-state form of the 
stream function $ associated with v by 

$ = vrg(pu,R) (1)  

where p = cos 8 and R = r/a.  Thus the spherical container corresponds to R = 1. Now 

v = - yy-1 [SPY (g+Rg,)/(1 --ru2)*> 01, (2) 
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where a suffix p or R denotes partial differentiation with respect to that variable. On 
taking the curl of the steady-state momentum equation 

(3) 
1 

V . Q V  = --Qp+vQ2v 
P 

and making use of ( 2 ) ,  after a little algebra, we obtain 

(' - p 2 ) f p p  - 4pfp + R y R R  - 2RfR = 3fgp + g fp  + R ( f p g R  - f R g p ) y  (4) 

where f = gpp+ ( 2 R g R + R 2 g R R ) / ( 1 - p 2 ) *  ( 5 )  

Q x v = [ O , O ,  - v(1 -p2)*r-2f].  

The function f and the fluid vorticity V x v are connected by 

( 6 )  

Equations ( 4 )  and ( 5 )  are the fundamental equations of our problem. For r < (I, that 
is as R -+ 0, g(p ,  R)  N go(p) and equation ( 5 )  becomesf = fo(p) = 9:; then ( 4 )  reduces to 

( 1  - p2) g',v - 4pg: = 39: + 99:. ( 7 )  

The solution of ( 7 )  is well known and the appropriate functions fo and go that make v 
finite on p = f 1 are given by 

f o  = - 4 c ( c + 2 ) / ( 1 + c - p ) 3 ,  (8) 

go = 2(1 --pZ)/U + c - p ) ,  (9) 

where c( > 0) is a parameter that is related to the impressed force which generates the 
flow field (Batchelor 1967, p. 207) by the equation: 

-- Fo --- 32 l + c  + 4 ( 1   log (&) + 8(1 + c ) .  
2nv2p 3 c ( 2 + c )  

Large values of c correspond to small values of F, and small values of c correspond to 
large F,. 

Equations ( 4 )  and ( 5 )  must be solved, in the region 0 < R < 1, - 1 < p < 1, subject 
to the following boundary conditions : 

f(p, 0) = g:, g M ,  0) = 90, ( 1 1 1 ,  ( 1 2 )  

g(p, = O ,  g R ( p ,  I )  = g( f ' 9  R, = 0> (131416) 

T 4 f p + R 2 f , ~ - 2 R f ~  = 3fgp-RfR gp = 0 On p = f 1 .  (171, ( 1 8 )  

Equations ( 1 3 )  and ( 1 4 )  imply that v = 0 on the spherical boundary. 
Equations ( 1 5 )  and ( 1 6 )  imply that v is finite on p = rf: 1 ,  and ( 1 7 )  and (18) imply that 
f,, is finite on p = f I .  

By integrating the transverse component of (3) we find that 

p = v2pr-2h(p, R ) ,  (19) 

where 

The total force acting on the fluid within a closed surface S is equal to the momentum 
1-2 
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flux out of S. Taking for S the surface of a sphere of radius r,, surrounding the origin, 
we obtain 

[LMT,.,, - (1  -@)* CT,.~] d,u = 2nrt Pbv. P - (1  -p2)* v .  6)  dp, (21) 

where 

2nrt [ P g r r  - (1  -p2)* arsI d~ 
1‘1 

represents the force exerted by the surrounding fluid on S in the direction of Fo and 

- 1  [ a,( r ) r ae 
a a v.6 i a  
ar 

(T, = -p+2vp- (v.P), crro = vp r -  - +-- (v.r) . (22),(23) 

On substituting the expressions for grr, a;, and v in (21), after some algebra and 
integration of part of the resulting expression, we establish the equation 

1 
(24) -- 22zp - /-l[P(h+9;)-R91? Sp-R29,,+ 29-2R9,ldP. 

The right-hand side of (24) must be a constant for all R satisfying the condition 
1 2 R 2 0. If we set R = 0, g = go, f = g l  we can show that the right-hand side of (24) 
can be reduced to that of (10). Equation (24) can be used as an indication of the 
accuracy of the numerical solution we shall construct. If our solution is accurate (24) 
must be in reasonably good agreement with (10) for all values of R in the range of 
interest. 

3. The linearized problem 
The solution of the linear problem was constructed by Lamb (p. 606) in Cartesian 

co-ordinates. It is, however, instructive to construct a linearized solution of (4) and (5) 
in spherical polars. For large c equations (8) and (9) may be expanded in powers of 
l /(c+ l) ,  that is 

4 
(1+6(5p2- I ) ) +  ..., 4 1% - - ~ - _ _ _ _  

= - ( c+  1) ( c +  1), 5(c+ 1)3 

(1 + ( 5 , ~ ~ -  1) )  + ... . 1 go = (1-/2) [-+-+-- 2 2P 2 
c +  1 ( c +  112 5(c+  113 

The powers of ,u in (25) and in the square brackets in (26) have been expressed as 
derivatives of Legendre polynomials. Equations (25) and (26) suggest that we set 

(9: + (5P2 - 1) 9 3  + . . . y 1 1 
-I------ 

[c;l (c+ l),” (c+ 1)3 
P g = ( l - $ )  -+- 

where f l y  f,, ..., g i  are functions of R. When we substitute (27) and (28) in (4) and (5) 
and equate the coefficients of l/(c + l) ,  l/(c + 1)2 and l/(c + 1)3 on the two sides of the 
resulting equation we obtain a set of equations involving fl, f2, . . . , 9;. This set can be 
solved hierarchically, that is for fl and g, for a solution which is accurate to order 
l/(c + l),  then for f2 and g ,  for accuracy to order l/(c + 1)2 and so on. The procedure is 
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straightforward and the solutions that make v = 0 on R = 1 and reduce to (25 )  and (26)  
at R = 0 are 

f 1 = - 4 + 1 0 R 3 ,  g 1 =  2-3R+R3,  (291, (30)  

f2=-12+12R-6R3+14R4,  g,= 2 - 3 R + R 2 - R 3 + R 4 ,  (31) , (32)  

(33)  f"3 = +[ - 4 - 7 2 R  + 84R2 - 48R3 log R - %4R3 + 108R4 - 42R5 - Y-R6 + 9R7],  

9: = 3 [ 2  - W R  - 24Rlog R + 21R2 - 8 R 3  - ?R3log R+ 6R4 -$R5 
-&R6+iR7], (34)  

f = +[ - 24 + 4 3 R  - 21R2- y R 3  + 3+R4 + w R 5  + 3R6 - ++R7], (35)  

g t  = + - $$R + aR2 - Za R3 log R - 3 6 8 0 9R3 + ER4 + 123R5 + 1.R' - - c R 7 .  2 0  1 7 5  3 4 6 5 0  6 0  6 9 3  5 0  9 9 0  (36)  

From (10) we obtain [for 1% l / ( c+  l ) ]  

1 17 1 
-=- FO +-- + ..., 16nv2p c + l  1 5 ( ~ + 1 ) ~  (37)  

and this expansion converges for c > 0. 

by setting 

and eliminating c between these equations. 
It is clear from (27)-(37) that the linear solution represents a reasonable 

approximation to the g field when Fo = 0(3v2p) ,  that is when c = O( 15) but in order 
to represent the ffield by f J ( c  + 1 )  to the same degree of accuracy c must be 3 times as 
large. If, however, we retain terms to order 1/(c+ 1)2  the approximation off and g is 
reasonably accurate when c = O( 10) or Fo = 0(6v2p) .  When c = 5 the values of Fo/v2p 
obtained from (37)  to order l / ( c  + and from the complete expression (10)  are 8.64 
and 8.65 and this suggests that when Fo = O(10v2p) our third-order approximation 
will be in close agreement with the full solution. This we confirmed by comparing 
the third-order approximation with our numerical solution (see $ 5 ) .  

Lamb's linear solution is obtained by retaining only terms of order l/(c + I), that is 

Fo/(16nv2p) = l / ( c  + 11, f = f J ( c  + I), g = (1-p ' )  gJ(c + 1) 

4. The numerical method 
Equations ( 4 )  and ( 5 )  are elliptic within the region - 1 < p < 1, 0 < R < 1, but 

become parabolic on the boundaries p = k 1 and R = 0. I t  is convenient to transform 
into equations which are elliptic throughout the region of interest; for this we follow 
Sozou & Pickering (1977) and set 

and 

Hence, equations ( 4 )  and (5 )  become 
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FIGURE 1. Streamline pattern in a meridian plane for the case c = 5 or Fo = 8 . 6 5 ~ ~ ~ .  The 
numbers on the curves are values of 1000@/va. The vorticity within the region bounded by the 
broken curve is directed in the positive 4 direction and in the surrounding region it is directed 
in the opposite sense. 

(1  - 2 7 - ~ ~ )  F7,- (2G+ 2G5+ 147 + 7v2+ 1) F,/( 1 + 7) 

+ 446 + 2[G,/( 1 + 7) - 61 F, - 6FG,/( 1 - 7) = 0,  (40b) 

( 4 1 ~ )  

(41 b )  

(1  + 27-77 [G,,+ G7/(1 - 7)] + 4(G.g+ Gt) = 4F(1-7)' (1 + 27 -v2),  
(1  - 2 7 - ~ ~ )  [G,,,-G,/( 1 +?)I + 4(Gg+ Gc) = 4F( 1 + 7)' (1 -27 -y2). 

Equations (40a) and (41a) hold for 0 < 7 < 1 whereas (40b) and (41b) hold for 
- 1 < 7 < 0. On p = 7 = 0, equations (40) reduce to the corresponding form of (4) and 
similarly (41) reduce to (5). For the equations on p = 0 we used (4) and (5) and set 
Sp = S7(2 - ST). We note that the transformation used makes €2 = 0 correspond to 
f ;  = - co and R = 1 correspond to f ;  = 0, that is the region of interest in the c, 7 plane 
is a semi-infinite strip. In order to reduce the length of the strip we make the reasonable 
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assumption that the solution a t  R = R,, where R, < 1, may be approximated by the 
known solution a t  R = 0 and thus perform our computations in the finite strip 

[ , < 5 < 0 ,  - 1 < 7 < 1 ,  

where 5, = log R,. In  the actual calculations we set R, = 0-01 and so [, M - 4.61. The 
boundary conditions ( 1  1)-( 16) are now transformed to 

F(7,  5 0 )  = S,”(P), G(7, 5 0 )  = 90(P), (4% (43) 

G(7,O) = 0, Gg(7,O) = 0, G( k 1 2 5 )  = 0 (44)-(47) 

J y k 1 , f )  = 0 (4% (49) 

F7/ ( l -7)  = -F 779 q ( 1 - 7 )  = -0  77 (5% (51) 

Fy(1 +71) = q 7 9  G7/V +7)  = GV7. (5% (53) 

F = GE5(7, 0)/[(1 - Y ) ~  (1  + 27-79]  for 0 < 7 < 1. (54a) 

F = GCC(7, O ) / [ (  1 + T,J)~ ( 1  - 27 - 771 (54b) 

and equations (17)  and (18), that express the condition that f,, is finite o n p  = 4 1, were 
replaced by the equations 

together with the requirement that, as 7 -+ 1, 

and as 7 -+ - 1 

We note that on 5 = 0 F can be determined in terms of G from (41a, b ) ,  (44) and (45) 
in the form 

and 

Thus if G is known we can solve (40a, b )  for F subject to (42), (48), (49) and (54a, b).  
Similarly if F is known (41a, b )  can be solved for G subject to (43), (44), (46) and (47). 

We note that if we approximate G, by second-order differences (44) and (45) imply 

for - 1 < 7 6 0. 

4G(7, - w = G(7, - 2%), ( 5 5 )  

where S[(> 0) is the steplength in the 5 direction. Hence in order to incorporate 
explicitly (45) in the solution we constructed, we solved (41 a, b )  for G in the region 
- 1 < 7 < 1, 5, < 6 < -S[ subject to (43), (46), (47) and (55). 

The numerical techniques used to express (40) and (41) in finite difference form were 
very similar to those employed previously (Sozou & Pickering 1975). The equations 
for F (40a, b )  were solved iteratively using successive over-relaxation and those for 
G (41a,b) directly using the fast Fourier transform method [see, for example, Le Bail 
(1972)l. The Fourier transform was employed in the [ direction. 

The overall solution process was as follows. We specified an initial approximation 
to G ,  and, using a second-order approximation for Gt5, estimated F(7, 0) from (54a, b) 
and solved (40a, 6 )  for F. Equations (41 a, b) were then solved for G and equation (55) 
was used to recalculate G(7, --S[). Equations (54a,b) were again used to obtain 
improved estimates of F(7,O) = Gt5 which were used to  construct an improved approxi- 
mation for F .  The new F was used for an improved solution for G and so on until con- 
vergence. Convergence was assumed when two successive iterations produced changes 
of less than 0.1 yo in both F and G a t  all mesh points. In the calculation of (54a, b )  and 
(55) we employed under-relaxation. The mesh lengths in the f and 7 directions were 
- [,/257 N 0.018 and +-, respectively. 
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FIGURE 2. Streamline pattern in a meridian plane for the case c = 1 or Po = 3 4 . 7 7 ~ ~ ~ .  The 
numbers on the curves are values of 100$/va. The vorticity within the region bounded by the 
broken curve is directed in the positive # direction and in the surrounding region it is directed 
in the opposite sense. 

5. Results and discussion 
We have computed the solutions for the cases c = 5, 1 and 0.2. The corresponding 

values of Fo/v2p are 8.65,34.77 and 156.32. Streamlines of the respective flow fields are 
shown in figures 1-3. When c = 5 the problem is weakly nonlinear and the solution we 
constructed, starting from (27) and (28) to order i / ( c  + i ) 3  as an initial approximation, 
converged very rapidly. Indeed the computed f and g fields hardly differed from those 
corresponding to the approximations (27) and (28) except near the boundary R = 1. 
Near R = 1 the maximum discrepancy between the computed solution and that given 
by (27) and (28) occurred in the g field, the computed g being about 7 yo smaller than 
that given by (28). As c decreases the nonlinearities become more pronounced, though 
down to c = 0.2 the construction of the solution was not particularly difficult. For 
values of c < 0.2 the spatial variation off is very rapid and it becomes rather difficult 
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0.5 

Fo T 

FIGURE 3. Streamline pattern in a meridian plane for the case c = 0.2 or Fo = 1 5 6 . 3 2 ~ ~ ~ .  The 
numbers on the curves are values of 1OO$/va. The vorticity within the region bounded by the 
broken curve is directed in the positive $ direction and in the surrounding region it is directed 
in the opposite sense. 

to  construct a convergent solution. We believe, however, that the values of c con- 
sidered here bring out all the essential features of the nonlinear flow fields. 

As suggested in 9 2 an indication of the accuracy of our numerical solution can be 
obtained by checking for the satisfaction of (24) at all values of R. Our computations, 
using second-order differences for the derivatives and Simpson’s rule for integration, 
have shown that the right-hand side of (24) is approximately a constant whose value is 
given by (10). For the case c = 5 and c = 1 the computed value of the right-hand side 
of (24) differed by less than 2.5 yo from its expected constant value for all R < 0-7. For 
larger values of R the discrepancy between (10) and (24) got progressively worse and 
near the boundary R = 1 it  was just under 7 yo. For the case c = 0.2 the discrepancy 
between (10) and (24) was a little worse and its maximum value, occurring close to 
R = 1, was about 10 %. Since, however, the problem for the case c = 0.2 is highly 
nonlinear we believe that the computed solution is reasonably accurate for all three 
values of c we used. 
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R 

0 
0.2 
0.4 
0.6 
0.8 

0 
0.2 
0-4 
0.6 
0.8 

C 

r L > 
& 100 

(linear case) 5 1 0.2 
p = l  

7.96 9-26 11.50 12.72 
5.60 6.70 9.67 13.23 
3-44 4.14 6.53 12.11 
1-66 2.01 3.38 8.87 
0.45 0.55 0.97 3.43 

- 7.96 - 6.61 - 3.84 - 1.16 
- 5-60 - 4-78 - 2.86 - 0.85 
- 3.44 - 2.90 - 1.73 - 0.49 
- 1.66 - 1.38 - 0.80 - 0.21 
- 0.45 - 0.36 - 0.20 - 0.05 

p = - 1  

P O / (  V”P) e 1  8.65 34.77 156-32 

TABLE 1. Values of - 100v~pgp/Fo on p = t- 1 for some c and R 

The linear flow field is symmetric about the plane p = 0 but the fields f o  and go, that 
correspond to the Landau-Squire jet, are asymmetric. Iffor a specified c we define the 
asymmetry of these fields by fo(p) / f , (  - p) andgo(p)/go( - p) we find that their maximum 
asymmetry is given by 

and thus unless c is exceedingly large one expects some asymmetry in the vorticity 
and velocity fields, especially the former. Our solution shows that away from the axial 
regions the asymmetry for the case c = 5 is reduced and the streamline pattern is not 
very asymmetric as can be confirmed by inspection of figure 1. This is to be expected, 
since for the case c = 5 the third-order solution represents a reasonable approximation 
and the asymmetry in the f and g fields is reflected in the second-order term which 
vanishes on p = 0. 

As c decreases the nonlinearities of the problem become more intense. The asym- 
metry in the solutionsf, and go becomes more pronounced and the detailed data of our 
solution show that it also spreads throughout the fluid region. This is clearly demon- 
strated in the streamline pattern of figure 2, which represents the flow field for the case 
c = 1 and, even more so, in that of figure 3 which corresponds to the case c = 0.2. From 
figures 1-3 it  is deduced that when the value of c is decreased, that is Fo is increased, the 
centre of the eddies is displaced from the plane p = 0 to larger values of ,u and is further 
away from the force. 

The radial velocity is - 2avg,/R and values of - 100v2pgp/Fo along the axis p = Ic_ 1 
for some c and R are shown in table 1. Inspection of this table shows that as F, increases 
the fluid speed per unit force increases on p = 1 and decreases on p = - 1, and per- 
centage-wise the increase (on p = 1) a t  a point P is larger the further P is from the 
origin. Also this table and detailed data of our output indicate that for any specified c 
percentage-wise the speed reduction per unit force onp = - 1 as F,increases, diminishes 
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X 

FIGURE 4. Values of the total flow generated by F,. S = Fo/v2p, Y = 2n@,/va, where @,,, is the 
maximum value of @. . . . , linear theory; ---, third-order approximation; -, numerical 
solution. 

as R increases from 0 until it reaches a minimum ; thence it continuously increases 
with R. 

The vorticity field is azimuthal and in the linear problem within a sphere which is 
centred a t  0 and has radius R N 0.74 it  is directed in the positive Qt sense, that isf < 0,  
and in the surrounding region it is directed in the opposite sense. As c decreases (from 
large values) the spherical core where f < 0 is shifted in the direction of the force Fo and 
is somewhat squeezed, especially for small c as can easily be seen from the regions 
enclosed by the broken curves in figures 1-3. 

One quantity of particular interest is the total volume flow, that is 27r3hm, where 3hrn 
denotes the maximum value of $, generated by the force. Figure 4 shows values of this 
quantity derived from the linear solution, the third-order approximation and our num- 
erical solution. The numerical solution curve was constructed from the three points cor- 
responding to Fo/v2p being 8.65,34.77 and 156.32. These were obtained from the three 
values of c ( 5 ,  1 and 0.2) for which we solved the problem numerically. We must also 
note that the series expansions for f ,  g and F, are valid for c > 0 but [see equation (37)] 
in the linear approximation values of F,/v2p exceeding 16m 2: 50.3 are associated with 
negative values of c.  Similarly in the case of the third-order approximation c takes 
negative values when Fo/v2p > 512n/15 N 107.2. (The least value of c for the part of 
the third-order approximation curve shown in figure 4 is about - 0.03.) Figure 4 and 
also details of our computations show that the linear solution overestimates $m, though 
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for values of Fo/vzp up to about 20 this overestimate is very small. Even when Fo/vzp is 
50 the overestimate of $,,, due to the use of the linear theory is less than 20 yo. As 
expected the third-order solution provides a better approximation to $m than the 
linear theory and when Fo/vzp is 50 this solution predicts a value of $m about 6 yo 
higher than that associated with the curve of the full solution. We believe that the 
conclusions reached in the last four paragraphs are, in general, independent of the 
geometry of the problem. 

We are grateful to Professor Sir James Lighthill for suggestions concerning the 
presentation of the material and to Mr D. J. Mullings for some programming assistance. 
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